DIGITAL SYSTEM DESIGN
Building Block Circuits

- Rather than building systems at the gate level, often digital systems are constructed from higher level, but still basic, building block circuits.

- Multiplexers, decoders, flip-flops, registers, and counters are examples of building blocks, which are subcircuits from which complex circuits can be constructed.

- For many larger systems, the circuitry required can often be divided into two Sub-systems: the **datapath circuit**; and the **control circuit**.

- The **datapath** circuit is used to store and manipulate data and to transfer data from one part of the system to another.

- Datapath circuits can comprise of building blocks such as registers, shift registers, counters, multiplexers, decoders, etc.
Building Block Circuits

- The control circuit, usually an FSM, controls the operation of the datapath circuit.
- In many applications, it is useful to be able to prevent the data stored in a flip-flop from changing when an active clock edge occurs.
- A simple example of the division of the data path and the control path can be illustrated using a flip-flop with an enable input.
- The data path consists of the flip-flop and its input, and the control path consists of the enable input.
- The two paths exist independently of each other with the enable (control path) controlling the flow of the data into the flip-flop.
- It is also useful to be able to inhibit the shifting operation in a shift register by using an enable input.
Algorithmic State Machine (ASM) charts

- State diagrams are not convenient to describe the behavior of large state machines
- ASM charts are used to describe large machines
 - It is a type of flow chart
 - Represents state transitions
 - Represent generated outputs for an ASM
- ASM charts have three types of elements
 - State box
 - Decision box
 - Conditional output box
Elements used in ASM charts

- State name
- Output signals or actions (Moore type)
- Condition expression: 0 (False) or 1 (True)
- Conditional outputs or actions (Mealy type)

(a) State box
(b) Decision box
ASM chart for a simple FSM
State Diagram and its corresponding ASM chart

\[w_0 = z_0 = e \]
\[w_1 = z_1 = e \]

\[A \]
\[B \]

Reset

\[w = 1 \rightarrow z = 0 \]
\[w = 0 \rightarrow z = 0 \]

\[1 \]

\[0 \]

\[z \]
Design Example: A Bit-Counting Circuit

- Using the concepts of the ASM and the separate data and control circuits we can implement fairly complex systems.
- Suppose we wish to count the number of bits in a register that have the value 1.
- Assume that the value A is stored in a register that can shift its contents in the left to-right direction.
- Pseudo-code for the bit counter.

\[
B=0; \\
\text{while } A \neq 0 \text{ do} \\
\quad \text{if } a_0 = 1 \text{ then} \\
\quad \quad B=B+1; \\
\quad \text{End if;} \\
\quad \text{Right-shift } A; \\
\text{End while;}
\]
- s: input signal that indicates if A has been loaded
- We can assume that the same clock signal controls the changes in the state of the machine and changes in A and B. Therefore in state S2, the decision box which tests whether $A=0$, occurs simultaneously with the box that checks the value of a_0.
- If $A=0$, then the FSM will change to state S3 on the next clock edge (this also shifts A, which has no effect because A is already 0).
- On the other hand, if $A=0$, then the FSM does not change to S3 but remains in S2. At the same time A is shifted, and B is incremented if a_0 has the value 1.
A Bit-Counting Circuit (data-path)

- For the data-path circuit a shift register which shifts left to-right is required to implement A.
- It must have the parallel load capability and an enable input since shifting should occur only in state S2.
- In addition, a counter is needed for B, and it needs a parallel-load capability to initialize the count to 0 in state S1.
ASM chart for the bit counter control circuit

s: A is ready
z: =1 when A = 0 (filled it)
ASM chart for the bit counter control circuit.
Shift-And-Add Multiplier

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>1101</td>
</tr>
<tr>
<td>× 11</td>
<td>× 1011</td>
</tr>
<tr>
<td>13</td>
<td>1101</td>
</tr>
<tr>
<td>13</td>
<td>1101</td>
</tr>
<tr>
<td>143</td>
<td>0000</td>
</tr>
<tr>
<td></td>
<td>1101</td>
</tr>
<tr>
<td></td>
<td>100011</td>
</tr>
</tbody>
</table>

$P = 0$

for $i = 0$ to $n - 1$ do
 if $b_i = 1$ then
 $P = P + A$
 end if;
end for;

$P = \text{Product}$
\(P = 0 \);
for \(i = 0 \) to \(n - 1 \) do
 if \(b_i = 1 \) then
 \(P = P + A \);
 end if;
 Left-shift \(A \);
end for;

ASM chart for the multiplier.

\(b_0 \)

\(B = 0 \)?
Datapath circuit for the multiplier.
ASM chart for the multiplier control circuit.

- **S1**: Psel = 0, EP
 - **s**: 0, 1

- **S2**: Psel = 1, EA, EB
 - **z**: 1, 0
 - **b_0**: 0, 1

- **S3**: Done

- **EP**

- **Reset**