Registers, Register Transfers and Counters
Overview

- Registers, Microoperations and Implementations
 - Registers and load enable
 - Register transfer operations
 - Microoperations - arithmetic, logic, and shift
 - Microoperations on a single register
 - Multiplexer-based transfers
 - Shift registers
- Register Cells, Buses, & Serial Operations
- Control of Register Transfers
- Counters
Registers

- Register — a collection of binary storage elements
- In theory, a register is sequential logic which can be defined by a state table
- More often, think of a register as storing a vector of binary values
- Frequently used to perform simple data storage and data movement and processing operations
Example: 2-bit Register

- How many states are there?
- How many input combinations?
- Output combinations?
- What is the output function?
- What is the next state function?
- Moore or Mealy?

State Table:

<table>
<thead>
<tr>
<th>Current State</th>
<th>Next State</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A1(t+1) A0(t+1)</td>
<td>(=A1 A0)</td>
</tr>
<tr>
<td></td>
<td>00 01 10 11</td>
<td>Y1 Y0</td>
</tr>
<tr>
<td>A1 A0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td></td>
<td>0 1</td>
<td>0 1</td>
</tr>
<tr>
<td></td>
<td>1 0</td>
<td>1 0</td>
</tr>
<tr>
<td></td>
<td>1 1</td>
<td>1 1</td>
</tr>
</tbody>
</table>

- What are the quantities above for an n-bit register?
Simple Register

(a) Logic diagram

(b) Symbol
Register Design Models

- Due to the large numbers of states and input combinations as \(n \) becomes large, the state diagram/state table model is not feasible!

- What are methods we can use to design registers?
 - Add predefined combinational circuits to registers
 - Example: To count up, connect the register flip-flops to an incrementer
 - Design individual cells using the state diagram/state table model and combine them into a register
 - A 1-bit cell has just two states
 - Output is usually the state variable
Register Storage

- **Expectations:**
 - A register can store information for multiple clock cycles
 - To “store” or “load” information should be controlled by a signal

- **Reality:**
 - A D flip-flop register loads information on every clock cycle

- **Realizing expectations:**
 - Use a signal to block the clock to the register,
 - Use a signal to control feedback of the output of the register back to its inputs, or
 - Use other SR or JK flip-flops, that for (0,0) applied, store their state

- **Load** is a frequent name for the signal that controls register storage and loading
 - Load = 1: Load the values on the data inputs
 - Load = 0: Store the values in the register
The *Load* signal enables the clock signal to pass through if 1 and prevents the clock signal from passing through if 0.

Example: For Positive Edge-Triggered or Negative Pulse Master-Slave Flip-flop:

```
Clock
Load
Gated Clock to FF
```

- What logic is needed for gating?
- What is the problem?

Gated Clock = Clock + Load

Clock Skew of gated clocks with respect to clock or each other
Registers with Clock Gating

(a) Logic diagram

(b) Symbol

(c) Load control input

(d) Timing diagram
A more reliable way to selectively load a register:

- Run the clock continuously, and
- Selectively use a load control to change the register contents.

Example: 2-bit register with Load Control:

- For Load = 0, loads register contents (hold current values)
- For Load = 1, loads input values (load new values)
- Hardware more complex than clock gating, but free of timing problems
Registers with Load-Controlled Feedback

(a) D Flip-flop with enable

(b) D Flip-flop with enable

(c) D Flip-flop with enable
Registers

Function Table

<table>
<thead>
<tr>
<th>Shift</th>
<th>Load</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>No change</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Load parallel data</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>Shift down from (Q_0) to (Q_3)</td>
</tr>
</tbody>
</table>

(b) Symbol

Clock
Registers

Function Table

<table>
<thead>
<tr>
<th>Mode control</th>
<th>Register Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>S<sub>1</sub> S<sub>0</sub></td>
<td></td>
</tr>
<tr>
<td>0 0</td>
<td>No change</td>
</tr>
<tr>
<td>0 1</td>
<td>Shift down</td>
</tr>
<tr>
<td>1 0</td>
<td>Shift up</td>
</tr>
<tr>
<td>1 1</td>
<td>Parallel load</td>
</tr>
</tbody>
</table>

(a) Logic diagram of one typical stage

(b) Symbol

Clock

Mode S₁

Mode S₀

Left serial input

LSI

D₀ → Q₀

D₁ → Q₁

D₂ → Q₂

D₃ → Q₃

Right serial input

RSI

MUX

D → Q_{i-1}

D → C

D → Q_i

D → C

D → Q_{i+1}

Clock
Register Transfer Operations

- Register Transfer Operations – The movement and processing of data stored in registers
- Three basic components:
 - set of registers
 - operations
 - control of operations
- Elementary Operations -- load, count, shift, add, bitwise "OR", etc.
 - Elementary operations called microoperations
Register Transfer Operations

- The system is partitioned into 2 types of modules:
 - Datapath: performs data processing operations.
 - Control unit: determines the sequence of those operations.
- Datapaths are defined by their registers and the operations performed on binary data stored in the registers.
Register Notation

(a) Register R

<table>
<thead>
<tr>
<th>R</th>
</tr>
</thead>
</table>

(b) Individual bits of 8-bit register

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
</table>

(c) Numbering of 16-bit register

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|---|
| R2 | | | | | | | | | | | | | | | |

(d) Two-part 16-bit register

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC (H)</td>
<td></td>
</tr>
<tr>
<td>PC (L)</td>
<td></td>
</tr>
</tbody>
</table>

Basic Symbols for Register Transfers

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letters</td>
<td>Denotes a register</td>
<td>(AR, R2, DR, IR)</td>
</tr>
<tr>
<td>(and numerals)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parentheses</td>
<td>Denotes a part of a register</td>
<td>(R2(1), R2(7:0), AR(L))</td>
</tr>
<tr>
<td>Arrow</td>
<td>Denotes transfer of data</td>
<td>(R1 \leftarrow R2)</td>
</tr>
<tr>
<td>Comma</td>
<td>Separates simultaneous transfers</td>
<td>(R1 \leftarrow R2, R2 \leftarrow R1)</td>
</tr>
<tr>
<td>Square brackets</td>
<td>Specifies an address for memory</td>
<td>(DR \leftarrow M[AR])</td>
</tr>
</tbody>
</table>
If \((K1 = 1)\) then \((R2 ← R1)\) is shortened to \(K1: (R2 ← R1)\) where \(K1\) is a control variable specifying a conditional execution of the microoperation.
Microoperations

- **Logical Groupings:**
 - Transfer - move data from one register to another
 - Arithmetic - perform arithmetic on data in registers
 - Logic - manipulate data or use bitwise logical operations
 - Shift - shift data in registers

Arithmetic operations
- + Addition
- – Subtraction
- * Multiplication
- / Division

Logical operations
- ∨ Logical OR
- ∧ Logical AND
- ⊕ Logical Exclusive OR
- ¬ Not
Register Transfers

Textbook RTL, VHDL, and Verilog Symbols for Register Transfers

<table>
<thead>
<tr>
<th>Operation</th>
<th>Text RTL</th>
<th>VHDL</th>
<th>Verilog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combinational assignment</td>
<td>=</td>
<td><= (concurrent)</td>
<td>assign = (nonblocking)</td>
</tr>
<tr>
<td>Register transfer</td>
<td></td>
<td><= (concurrent)</td>
<td><= (nonblocking)</td>
</tr>
<tr>
<td>Addition</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Subtraction</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Bitwise AND</td>
<td>^</td>
<td>and</td>
<td>&</td>
</tr>
<tr>
<td>Bitwise OR</td>
<td>∨</td>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Bitwise XOR</td>
<td>⊕</td>
<td>xor</td>
<td>^</td>
</tr>
<tr>
<td>Bitwise NOT</td>
<td>¬ (overline)</td>
<td>not</td>
<td>~</td>
</tr>
<tr>
<td>Shift left (logical)</td>
<td>sl</td>
<td>sll</td>
<td><<</td>
</tr>
<tr>
<td>Shift right (logical)</td>
<td>sr</td>
<td>srl</td>
<td>>></td>
</tr>
<tr>
<td>Vectors/registers</td>
<td>A(3:0)</td>
<td>A(3 down to 0)</td>
<td>A[3:0]</td>
</tr>
<tr>
<td>Concatenation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example Microoperations

- Add the content of R1 to the content of R2 and place the result in R1.

 \[R1 \leftarrow R1 + R2 \]

- Multiply the content of R1 by the content of R6 and place the result in PC.

 \[PC \leftarrow R1 \times R6 \]

- Exclusive OR the content of R1 with the content of R2 and place the result in R1.

 \[R1 \leftarrow R1 \oplus R2 \]
Example Microoperations (Continued)

- Take the 1's Complement of the contents of R2 and place it in the PC.
 \[\text{PC} \leftarrow R2 \]

- On condition \(K1 \text{ OR } K2 \), the content of \(R1 \) is Logic bitwise Ored with the content of \(R3 \) and the result placed in \(R1 \).
 \[(K1 + K2): R1 \leftarrow R1 \lor R3\]

- NOTE: "+" (as in \(K_1 + K_2 \)) and means “OR.”
 In \(R1 \leftarrow R1 + R3 \), + means “plus.”
Control Expressions

- The control expression for an operation appears to the left of the operation and is separated from it by a colon.
- Control expressions specify the logical condition for the operation to occur.
- Control expression values of:
 - Logic "1" -- the operation occurs.
 - Logic "0" -- the operation does not occur.

- Example:
 \[
 X \text{ K1 : } R1 \leftarrow R1 + R2 \\
 X \text{ K1 : } R1 \leftarrow R1 + \overline{R2} + 1
 \]
 - Variable K1 enables the add or subtract operation.
 - If X = 0, then X = 1 so X K1 = 1, activating the addition of R1 and R2.
 - If X = 1, then X K1 = 1, activating the addition of R1 and the two's complement of R2 (subtract).
Arithmetic Microoperations

Symbolic designation	**Description**
$R0 \leftarrow R1 + R2$ | Contents of $R1$ plus $R2$ transferred to $R0$
$R2 \leftarrow \overline{R2}$ | Complement of the contents of $R2$ (1’s complement)
$R2 \leftarrow R2 + 1$ | 2’s complement of the contents of $R2$
$R0 \leftarrow R1 + \overline{R2} + 1$ | $R1$ plus 2’s complement of $R2$ transferred to $R0$ (subtraction)
$R1 \leftarrow R1 + 1$ | Increment the contents of $R1$ (count up)
$R1 \leftarrow R1 – 1$ | Decrement the contents of $R1$ (count down)

- Note that any register may be specified for source 1, source 2, or destination.
- These simple microoperations operate on the whole word.
Adder/Subtractor Unit

\[X'K_1 : R1 \leftarrow R1 + R2 \]
\[XK_1 : R1 \leftarrow R1 + R2' + 1 \]
Logical Microoperations

Symbolic designation	**Description**
\(R0 \leftarrow \overline{R1}\) | Logical bitwise NOT (1’s complement)
\(R0 \leftarrow R1 \land R2\) | Logical bitwise AND (clears bits)
\(R0 \leftarrow R1 \lor R2\) | Logical bitwise OR (sets bits)
\(R0 \leftarrow R1 \oplus R2\) | Logical bitwise XOR (complements bits)

- Let \(R1 = 10101010\), and \(R2 = 11110000\)
- Then after the operation, \(R0\) becomes:

<table>
<thead>
<tr>
<th>(R0)</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>01010101</td>
<td>(R0 \leftarrow R1)</td>
</tr>
<tr>
<td>11111010</td>
<td>(R0 \leftarrow R1 \lor R2)</td>
</tr>
<tr>
<td>10100000</td>
<td>(R0 \leftarrow R1 \land R2)</td>
</tr>
<tr>
<td>01011010</td>
<td>(R0 \leftarrow R1 \oplus R2)</td>
</tr>
</tbody>
</table>
Shift Microoperations

Examples of Shifts

<table>
<thead>
<tr>
<th>Type</th>
<th>Symbolic designation</th>
<th>Eight-bit examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>shift left</td>
<td>R1 ← sl R2</td>
<td>Source R2</td>
</tr>
<tr>
<td>shift right</td>
<td>R1 ← sr R2</td>
<td>10011110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11100101</td>
</tr>
</tbody>
</table>

- **Note:** These shifts "zero fill". Sometimes a separate flip-flop is used to provide the data shifted in, or to “catch” the data shifted out.

- Other shifts are possible (rotates, arithmetic).
Register Cell Design

- Assume that a register consists of identical cells
- Then register design can be approached as follows:
 - Design representative cell for the register
 - Connect copies of the cell together to form the register
 - Applying appropriate “boundary conditions” to cells that need to be different and contract if appropriate
- **Register cell design** is the first step of the above process
Register Cell Specifications

- A register
- Data inputs to the register
- Control input combinations to the register
 - Example 1: Not encoded
 - Control inputs: Load, Shift, Add
 - At most, one of Load, Shift, Add is 1 for any clock cycle
 (0,0,0), (1,0,0), (0,1,0), (0,0,1)
 - Example 2: Encoded
 - Control inputs: S1, S0
 - All possible binary combinations on S1, S0
 (0,0), (0,1), (1,0), (1,1)
Register Cell Specifications

- A set of register functions (typically specified as register transfers)
 - Example:
 - Load: $A \leftarrow B$
 - Shift: $A \leftarrow sr B$
 - Add: $A \leftarrow A + B$

- A hold state specification
 - Example:
 - Control inputs: Load, Shift, Add
 - If all control inputs are 0, hold the current register state
Example 1: Register Cell Design

- Register A (m-bits) Specification:
 - Data input: B
 - Control inputs (CX, CY)
 - Control input combinations (0,0), (0,1) (1,0)
 - Register transfers:
 - CX : A ← B V A
 - CY : A ← B ⊕ A
 - Hold state: (0,0)
Example 1: Register Cell Design (continued)

- Load Control
 \[\text{Load} = CX + CY \]

- Since all control combinations appear as if encoded \((0,0), (0,1), (1,0)\) can use multiplexer without encoder:
 \[
 \begin{align*}
 S1 &= CX \\
 S0 &= CY \\
 D0 &= A_i & \text{Hold A} \\
 D1 &= A_i & B_i \oplus A_i & CY = 1 \\
 D2 &= A_i & B_i \lor A_i & CX = 1
 \end{align*}
 \]

- Note that the decoder part of the 3-input multiplexer can be shared between bits if desired.
Sequential Circuit Design Approach

- Find a state diagram or state table
 - Note that there are only two states with the state assignment equal to the register cell output value

- Use the design procedure in Chapter 5 to complete the cell design

- For optimization:
 - Use K-maps for up to 4 to 6 variables
 - Otherwise, use computer-aided or manual optimization
Example 1 Again

State Table:

<table>
<thead>
<tr>
<th>A_i</th>
<th>B_i</th>
<th>$A_i \lor B_i$</th>
<th>$A_i + B_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CX = 0</td>
<td>CY = 0</td>
<td>CX = 1</td>
<td>CX = 1</td>
</tr>
<tr>
<td>B_i = 0</td>
<td>B_i = 1</td>
<td>B_i = 0</td>
<td>B_i = 1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- Four variables give a total of 16 state table entries
- By using:
 - Combinations of variable names and values
 - Don’t care conditions (for $CX = CY = 1$)

Only 8 entries are required to represent the 16 entries
Example 1 Again (continued)

- K-map - Use variable ordering CX, CY, Ai, Bi and assume a D flip-flop

```
  | 0 0 1 1 |
  | 0 1 0 1 |
  | 0 1 1 1 |
  | X X X X |
```

```
  CX  Bi
  0 0 1 1
  1 1 0 0
  1 1 0 0
```
Example 1 Again (continued)

- The resulting SOP equation:
 \(D_i = CX B_i + CY A_i B_i + A_i B_i + CY A_i \)

- Using factoring and DeMorgan’s law:
 \(D_i = CX B_i + A_i (CY B_i) + A_i(CY B_i) \)
 \(D_i = CX B_i + A_i \oplus (CY B_i) \)
 The gate input cost per cell = 2 + 8 + 2 + 2 = 14

- The gate input cost per cell for the previous version is:

 Per cell: 19
 Shared decoder logic: 8

- Cost gain by sequential design > 5 per cell

- Also, no Enable on the flip-flop makes it cost less
Register Transfer Structures

- **Multiplexer-Based Transfers** - Multiple inputs are selected by a multiplexer dedicated to the register

- **Bus-Based Transfers** - Multiple inputs are selected by a shared multiplexer driving a bus that feeds inputs to multiple registers

- **Three-State Bus** - Multiple inputs are selected by 3-state drivers with outputs connected to a bus that feeds multiple registers

- **Other Transfer Structures** - Use multiple multiplexers, multiple buses, and combinations of all the above
Multiplexer-Based Transfers

- Multiplexers connected to register inputs produce flexible transfer structures (Note: Clocks are omitted for clarity)

- The transfers are:
 - K1: R0 ← R1
 - K2·K1: R0 ← R2
Multiplexer Approach

- Uses an n-input multiplexer with a variety of transfer sources and functions.
Multiplexer Approach

- Load enable by OR of control signals $K_0, K_1, \ldots, K_{n-1}$ - assumes no load for 00...0
- Use Encoder + Multiplexer (shown) or $n \times 2$ AND-OR to select sources and/or transfer functions
Multiplexer and Bus-Based Transfers for Multiple Registers

- Multiplexer dedicated to each register
- Shared transfer paths for registers
 - A shared transfer object is called a bus (Plural: buses)
- Bus implementation using:
 - multiplexers
 - three-state nodes and drivers
- In most cases, the number of bits is the length of the receiving register
Dedicated MUX-Based Transfers

- Multiplexer connected to each register input produces a very flexible transfer structure =>
- Characterize the simultaneous transfers possible with this structure.

(a) Dedicated multiplexers
Multiplexer Bus

- A single bus driven by a multiplexer lowers cost, but limits the available transfers.
- Characterize the simultaneous transfers possible with this structure.
- Characterize the cost savings compared to dedicated multiplexers.

<table>
<thead>
<tr>
<th>Register Transfer</th>
<th>Select</th>
<th>Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 S0</td>
<td>L2 L1 L0</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>R0 ← R2</td>
<td>1 0</td>
<td>0 0 1</td>
</tr>
<tr>
<td>R0 ← R1, R2 ← R1</td>
<td>0 1</td>
<td>1 0 1</td>
</tr>
<tr>
<td>R0 ← R1, R1 ← R0</td>
<td>0 1</td>
<td>1 0 1</td>
</tr>
</tbody>
</table>

Impossible
Three-State Bus

- The 3-input MUX can be replaced by a 3-state node (bus) and 3-state buffers.
- Cost is further reduced, but transfers are limited.
- Characterize the simultaneous transfers possible with this structure.
- Characterize the cost savings and compare.

(a) Register with bidirectional input–output lines and symbol

(b) Multiplexer bus

(c) Three-state bus using registers with bidirectional lines
Serial Transfers and Microoperations

- **Serial Transfers**
 - Used for “narrow” transfer paths
 - Example 1: Telephone or cable line
 - Parallel-to-Serial conversion at source
 - Serial-to-Parallel conversion at destination
 - Example 2: Initialization and Capture of the contents of many flip-flops for test purposes
 - Add shift function to all flip-flops and form large shift register
 - Use shifting for simultaneous Initialization and Capture operations

- **Serial microoperations**
 - Example 1: Addition
 - Example 2: Error-Correction for CDs
Serial Transfer

Example of Serial Transfer

<table>
<thead>
<tr>
<th>Timing pulse</th>
<th>Shift Register A</th>
<th>Shift Register B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial value</td>
<td>1 0 1 1</td>
<td>0 0 1 0</td>
</tr>
<tr>
<td>After T_1</td>
<td>0 1 0 1</td>
<td>1 0 0 1</td>
</tr>
<tr>
<td>After T_2</td>
<td>0 0 1 0</td>
<td>1 1 0 0</td>
</tr>
<tr>
<td>After T_3</td>
<td>0 0 0 1</td>
<td>0 1 1 0</td>
</tr>
<tr>
<td>After T_4</td>
<td>0 0 0 0</td>
<td>1 0 1 1</td>
</tr>
</tbody>
</table>
Serial Microoperations

- By using two shift registers for operands, a full adder, and a flip flop (for the carry), we can add two numbers serially, starting at the least significant bit.
- Serial addition is a low cost way to add large numbers of operands, since a “tree” of full adder cells can be made to any depth, and each new level doubles the number of operands.
- Other operations can be performed serially as well, such as parity generation/checking or more complex error-check codes.
- Shifting a binary number left is equivalent to multiplying by 2.
- Shifting a binary number right is equivalent to dividing by 2.
The circuit shown uses two shift registers for operands A(3:0) and B(3:0).

A full adder, and one more flip flop (for the carry) is used to compute the sum.

The result is stored in the A register and the final carry in the flip-flop.

With the operands and the result in shift registers, a tree of full adders can be used to add a large number of operands. Used as a common digital signal processing technique.
Serial Adder

Diagram showing the Serial Adder with components labeled as follows:
- Register A (SRG 4) with inputs C, Clear, SI, and SO
- Register B (SRG 4) with inputs C, Clear, SI, and SO
- Full Adder with inputs X, Y, Z, and C
- Shift Clock
- Serial input
- Carry
- Reset

The diagram illustrates the wiring and interconnections between these components.
Counters

- Counters are sequential circuits which "count" through a specific state sequence. They can count up, count down, or count through other fixed sequences. Two distinct types are in common usage:

 - Ripple Counters
 - Clock connected to the flip-flop clock input on the LSB bit flip-flop
 - For all other bits, a flip-flop output is connected to the clock input, thus circuit is not truly synchronous!
 - Output change is delayed more for each bit toward the MSB.
 - Resurgent because of low power consumption

 - Synchronous Counters
 - Clock is directly connected to the flip-flop clock inputs
 - Logic is used to implement the desired state sequencing
Ripple Counter

- How does it work?
 - When there is a positive edge on the clock input of A, A complements.
 - The clock input for flip-flop B is the complemented output of flip-flop A.
 - When flip A changes from 1 to 0, there is a positive edge on the clock input of B causing B to complement.
The arrows show the cause-effect relationship from the prior slide =>

The corresponding sequence of states =>

\((B, A) = (0,0), (0,1), (1,0), (1,1), (0,0), (0,1), \ldots\)

Each additional bit, C, D, \ldots behaves like bit B, changing half as frequently as the bit before it.

For 3 bits: \((C, B, A) = (0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1), (0,0,0), \ldots\)
Ripple Counter (continued)

- These circuits are called *ripple counters* because each edge sensitive transition (positive in the example) causes a change in the next flip-flop’s state.

- The changes “ripple” upward through the chain of flip-flops, i.e., each transition occurs after a clock-to-output delay from the stage before.

- To see this effect in detail look at the waveforms on the next slide.
Starting with $C = B = A = 1$, equivalent to $(C, B, A) = 7$ base 10, the next clock increments the count to $(C, B, A) = 0$ base 10. In fine timing detail:

- The clock to output delay t_{PHL} causes an increasing delay from clock edge for each stage transition.
- Thus, the count “ripples” from least to most significant bit.
- For n bits, total worst case delay is $n \times t_{PHL}$.

![Diagram showing timing delays](image)
Synchronous Counters

- To eliminate the "ripple" effects, use a common clock for each flip-flop and a combinational circuit to generate the next state.
- For an up-counter, use an incrementer =>

<table>
<thead>
<tr>
<th>Counting Sequence of Binary Counter</th>
<th>Upward Counting Sequence</th>
<th>Downward Counting Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q3 Q2 Q1 Q0</td>
<td>Q3 Q2 Q1 Q0</td>
<td></td>
</tr>
<tr>
<td>0 0 0 0</td>
<td>1 1 1 1</td>
<td></td>
</tr>
<tr>
<td>0 0 0 1</td>
<td>1 1 1 0</td>
<td></td>
</tr>
<tr>
<td>0 0 1 1</td>
<td>1 1 0 0</td>
<td></td>
</tr>
<tr>
<td>0 1 0 1</td>
<td>1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>0 1 1 0</td>
<td>1 0 0 1</td>
<td></td>
</tr>
<tr>
<td>1 0 0 0</td>
<td>0 1 1 1</td>
<td></td>
</tr>
<tr>
<td>1 0 0 1</td>
<td>0 1 1 0</td>
<td></td>
</tr>
<tr>
<td>1 0 1 0</td>
<td>0 1 0 1</td>
<td></td>
</tr>
<tr>
<td>1 0 1 1</td>
<td>0 1 0 0</td>
<td></td>
</tr>
<tr>
<td>1 1 0 0</td>
<td>0 0 1 1</td>
<td></td>
</tr>
<tr>
<td>1 1 0 1</td>
<td>0 0 1 0</td>
<td></td>
</tr>
<tr>
<td>1 1 1 0</td>
<td>0 0 0 1</td>
<td></td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>0 0 0 0</td>
<td></td>
</tr>
</tbody>
</table>

Clock
Synchronous Counters (continued)

- **Internal details =>**
- **Internal Logic**
 - XOR complements each bit
 - AND chain causes complement of a bit if all bits toward LSB from it equal 1
- **Count Enable**
 - Forces all outputs of AND chain to 0 to “hold” the state
- **Carry Out**
 - Added as part of incrementer
 - Connect to Count Enable of additional 4-bit counters to form larger counters
Synchronous Counters (continued)

- **Carry chain**
 - series of AND gates through which the carry “ripples”
 - Yields long path delays
 - Called *serial gating*

- **Replace AND carry chain with ANDs => in parallel**
 - Reduces path delays
 - Called *parallel gating*
 - Like carry lookahead
 - Lookahead can be used on COs and ENs to prevent long paths in large counters

- **Symbol for Synchronous Counter**
Other Counters

- **See text for:**
 - *Down Counter* - counts downward instead of upward
 - *Up-Down Counter* - counts up or down depending on value of a control input such as Up/Down
 - *Parallel Load Counter* - Has parallel load of values available depending on control input such as Load

- **Divide-by-n (Modulo n) Counter**
 - Count is remainder of division by \(n \); \(n \) may not be a power of 2 or
 - Count is arbitrary sequence of \(n \) states specifically designed state-by-state
 - Includes modulo 10 which is the BCD counter
Counter with Parallel Load

- Add path for input data
 - enabled for Load = 1
- Add logic to:
 - disable count logic for Load = 1
 - disable feedback from outputs for Load = 1
 - enable count logic for Load = 0 and Count = 1
- The resulting function table:

<table>
<thead>
<tr>
<th>Load</th>
<th>Count</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Hold Stored Value</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Count Up Stored Value</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>Load D</td>
</tr>
</tbody>
</table>
Counter w/ Unused States

- n flip-flops $\Rightarrow 2^n$ binary states
- Unused states: — states that are not used in specifying the sequential ckt — maybetreatedasdon’t-careconditionsor
- may be assigned specific next states __ Self-correcting counter:
 - Ensure that when a ckt enter one of its unused states, it eventually goes into one of the valid states after one or more clock pulses so it can resume normal operation.
 - Analyze the ckt to determine the next state from an unused state after it is designed.
Counter w/ Unused States

Example:

State Table and Flip-Flop Inputs for Counter

<table>
<thead>
<tr>
<th>Present State</th>
<th>Next State</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B C</td>
<td>DA = DB = DC = A(t+1)B(t+1)C(t+1)</td>
</tr>
<tr>
<td>0 0 0</td>
<td>0 0 1</td>
</tr>
<tr>
<td>0 0 1</td>
<td>0 1 0</td>
</tr>
<tr>
<td>0 1 0</td>
<td>1 0 0</td>
</tr>
<tr>
<td>1 0 0</td>
<td>1 0 1</td>
</tr>
<tr>
<td>1 0 1</td>
<td>1 1 0</td>
</tr>
<tr>
<td>1 1 0</td>
<td>0 0 0</td>
</tr>
</tbody>
</table>

The simplified f-f input eqs:

\[
D_A = A \oplus B \\
D_B = C \\
D_C = \overline{B \cdot C}
\]

Two unused states: 011 & 111
Counter w/ Unused States

![Diagram of a counter with unused states]
Use the sequential logic model to design a synchronous BCD counter with D flip-flops.

Input combinations 1010 through 1111 are don’t cares.
Synchronous BCD (continued)

- Use K-Maps to two-level optimize the next state equations and manipulate into forms containing XOR gates:

 \[
 \begin{align*}
 D1 &= Q1 \\
 D2 &= Q2 \oplus Q1Q8 \\
 D4 &= Q4 \oplus Q1Q2 \\
 D8 &= Q8 \oplus (Q1Q8 + Q1Q2Q4)
 \end{align*}
 \]

- The logic diagram can be drawn from these equations
 - An asynchronous or synchronous reset should be added

- What happens if the counter is perturbed by a power disturbance or other interference and it enters a state other than 0000 through 1001?
Synchronous BCD (continued)

- Find the actual values of the six next states for the don’t care combinations from the equations
- Find the overall state diagram to assess behavior for the don’t care states (states in decimal)

<table>
<thead>
<tr>
<th>Present State</th>
<th>Next State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q8 Q4 Q2 Q1</td>
<td>Q8 Q4 Q2 Q1</td>
</tr>
<tr>
<td>1 0 1 0</td>
<td>1 0 1 1</td>
</tr>
<tr>
<td>1 0 1 1</td>
<td>0 1 1 0</td>
</tr>
<tr>
<td>1 1 0 0</td>
<td>1 1 0 1</td>
</tr>
<tr>
<td>1 1 0 1</td>
<td>0 1 0 0</td>
</tr>
<tr>
<td>1 1 1 0</td>
<td>1 1 1 1</td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>0 0 1 0</td>
</tr>
</tbody>
</table>
Synchronous BCD (continued)

- For the BCD counter design, if an invalid state is entered, return to a valid state occurs within two clock cycles.

- Is this adequate? If not:
 - Is a signal needed that indicates that an invalid state has been entered? What is the equation for such a signal?
 - Does the design need to be modified to return from an invalid state to a valid state in one clock cycle?
 - Does the design need to be modified to return from an invalid state to a specific state (such as 0)?

- The action to be taken depends on:
 - the application of the circuit
 - design group policy

- See pages 244 of the text.
Three Decade Decimal Counter

Block Diagram of a Three-Decade Decimal BCD Counter
Counting Modulo N

- The following techniques use an n-bit binary counter with asynchronous or synchronous clear and/or parallel load:
 - Detect a terminal count of N in a Modulo-N count sequence to asynchronously Clear the count to 0 or asynchronously Load in value 0 (These lead to counts which are present for only a very short time and can fail to work for some timing conditions!)
 - Detect a terminal count of $N - 1$ in a Modulo-N count sequence to Clear the count synchronously to 0
 - Detect a terminal count of $N - 1$ in a Modulo-N count sequence to synchronously Load in value 0
 - Detect a terminal count and use Load to preset a count of the terminal count value minus $(N - 1)$
- Alternatively, custom design a modulo N counter as done for BCD
A BCD Counter

- Generate any count sequence:
 - E.g.: design a BCD counter by using a counter w/ parallel load & async clear
Counting Modulo 6: Synchronously Preset 9 on Reset and Load 9 on Terminal Count 14

- A synchronous, 4-bit binary counter with a synchronous Load is to be used to make a Modulo 6 counter.
- Use the Load feature to preset the count to 9 on Reset and detection of count 14.
- This gives a count of 9, 10, 11, 12, 13, 14, 9, 10, 11, 12, 13, 14, 9, ...
- If the terminal count is 15 detection is usually built in as Carry Out (CO)
Counting Modulo 7: Detect 7 and Asynchronously Clear

- A synchronous 4-bit binary counter with an asynchronous Clear is used to make a Modulo 7 counter.
- Use the Clear feature to detect the count 7 and clear the count to 0. This gives a count of 0, 1, 2, 3, 4, 5, 6, 7(short)0, 1, 2, 3, 4, 5, 6, 7(short)0, etc.

- DON’T DO THIS! Existence of state 7 may not be long enough to reliably reset all flip-flops to 0. Referred to as a “suicide” counter! (Count “7” is “killed,” but the designer’s job may be dead as well!)
A synchronous 4-bit binary counter with a synchronous load and an asynchronous clear is used to make a Modulo 7 counter.

Use the Load feature to detect the count "6" and load in "zero". This gives a count of 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, ...

Using don’t cares for states above 0110, detection of 6 can be done with Load = Q4 Q2
library ieee;
use ieee.std_logic_1164.all;

entity srg_4_r is
 port(CLK, RESET, SI : in std_logic;
 Q : out std_logic_vector(3 downto 0);
 SO : out std_logic);
end srg_4_r;
4-bit Shift Register with Reset

architecture behavioral of srg_4_r is
signal shift : std_logic_vector (3 downto 0);
begin
process (RESET, CLK)
begin
 if (RESET = '1') then
 shift <= "0000";
 elsif (CLK'event and (CLK = '1')) then
 shift <= shift(2 downto 0) & SI;
 end if;
end process;
Q <= shift;
SO <= shift(3);
end behavioral;
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity count_4_r is
 port(CLK, RESET, EN : in std_logic;
 Q : out std_logic_vector(3 downto 0);
 CO : out std_logic);

end count_4_r;
architecture behavioral of count_4_r is
signal count : std_logic_vector(3 downto 0);
begin
process (RESET, CLK)
begin
 if (RESET = '1') then
 count <= "0000";
 elsif (CLK'event and (CLK = '1') and (EN = '1')) then
 count <= count + "0001";
 end if;
end process;
CO <= '1' when count = "1111" and EN = '1' else '0';
Q <= count;
end behavioral;