Optimization
Optimization

- Optimization means finding that value of x which maximizes or minimizes a given function $f(x)$.
- Closely related problem is that of solving a nonlinear equation, $g(x) = 0$ for x, where g is a possibly multivariate function.
- An example of a multivariate function:

$$f(x_1, x_2, x_3) = x_1^4 + x_1 x_2 x_3 + 2x_2 x_3^2$$
Multidimensional Gradient Methods

- Use information from the derivatives of the optimization function to guide the search
- Finds solutions quicker compared with direct search methods
- A good initial estimate of the solution is required
- The objective function needs to be differentiable
Taylor Expansion

\[f(x + h) = f(x) + hf'(x) + \frac{h^2}{2!} f''(x) + \frac{h^3}{3!} f'''(x) + \frac{h^4}{4!} f''''(x) + \cdots \]

\[F(x + h) = F(x) + h^T g + \frac{1}{2} h^T Hh + O(\|h^3\|) \]

if the second derivatives of \(f \) are all continuous in a neighborhood \(D \), then the Hessian of \(f \) is a symmetric matrix throughout \(D \).

In linear algebra, a **symmetric matrix** is a **square matrix** that is equal to its transpose.

Formally, matrix \(A \) is symmetric if \(A = A^T \) and \(a_{ij} = a_{ji} \).
Gradients

- The gradient is a vector operator denoted by ∇ (referred to as “del”)
- When applied to a function, it represents the functions directional derivatives
- The gradient is the special case where the direction of the gradient is the direction of most or the steepest ascent/descent
- The gradient is calculated by

$$\nabla f = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j}$$
Gradients-Example

Calculate the gradient to determine the direction of the steepest slope at point (2, 1) for the function \(f(x, y) = x^2 y^2\)

Solution: To calculate the gradient we would need to calculate which are used to determine the gradient at point (2,1) as

\[
\frac{\partial f}{\partial x} = 2xy^2 = 2(2)(1)^2 = 4 \\
\frac{\partial f}{\partial y} = 2x^2 y = 2(2)^2 (1) = 8
\]

\[\nabla f = 4i + 8j\]
Gradient Vector

In the three-dimensional Cartesian coordinate system, the gradient is calculated by

\[\nabla f = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k} \]

where \(\mathbf{i}, \mathbf{j}, \mathbf{k} \) are the standard unit vectors. For example, the gradient of the function

\[f(x, y, z) = 2x + 3y^2 - \sin(z) \]

is

\[\nabla f = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k} = 2\mathbf{i} + 6y\mathbf{j} - \cos(z)\mathbf{k}. \]
Gradient Vector

In some applications it is customary to **represent the gradient as a row vector or column vector of its components** in a rectangular coordinate system:

The gradient of a function of n variables $f(x_1, x_2, \ldots, x_n)$ is defined as follows:

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \ldots, \frac{\partial f}{\partial x_n} \right)^T = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$
Gradient Example

For the function \(f(x) = 16x_1 + 12x_2 + x_1^2 + x_2^2 \) the gradient:

\[
\nabla f(x) = \begin{pmatrix}
\frac{\partial f}{\partial x_1} \\
\frac{\partial f}{\partial f} \\
\frac{\partial f}{\partial x_2}
\end{pmatrix} = \begin{pmatrix}
16 + 2x_1 \\
12 + 2x_2
\end{pmatrix}
\]

For the function \(f(x, y, z) = 2x + 3y^2 - \sin(z) \) the gradient:

\[
\nabla f(x) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right)^T = (2, 6y, -\cos(z))^T
\]
Jacobian Matrix

In vector calculus, the Jacobian matrix is the matrix of all first-order partial derivatives of a vector-valued function.

\[F: \mathbb{R}^n \rightarrow \mathbb{R}^m \]

\[J = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \ldots & \frac{\partial F_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_m}{\partial x_1} & \ldots & \frac{\partial F_m}{\partial x_n} \end{bmatrix} \]

In the case \(m=n \) the Jacobian matrix is a square matrix.

\[F(x, y) = \begin{bmatrix} x^2y \\ 5x + \sin(y) \end{bmatrix}, \quad F_1(x, y) = x^2y, \quad F_2(x, y) = 5x + \sin(y) \]

and the Jacobian matrix of \(F \) is

\[J_F(x, y) = \begin{bmatrix} \frac{\partial F_1}{\partial x} & \frac{\partial F_1}{\partial y} \\ \frac{\partial F_2}{\partial x} & \frac{\partial F_2}{\partial y} \end{bmatrix} = \begin{bmatrix} 2xy & x^2 \\ 5 & \cos(y) \end{bmatrix} \]

and the Jacobian determinant is

\[\det(J_F(x, y)) = 2xy \cos(y) - 5x^2. \]
Hessian

• The *Hessian* matrix or just the *Hessian* is the Jacobian matrix of second-order partial derivatives of a function.
• The determinant of the Hessian matrix is also referred to as the Hessian.
• For a two dimensional function the Hessian matrix is simply

\[H = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{bmatrix} \]
Hessians

The Hessian matrix of a function of n variables \(f(x_1, x_2, \ldots, x_n) \) is as follows:

\[
H = \nabla^2 f(x) = \left[\frac{\partial^2 f(x)}{\partial x_i \partial x_j} \right] \quad i, j = 1, 2, \ldots, n
\]

\[
H = f''(x) = \left[\frac{\partial^2 f}{\partial x_i \partial x_j} \right] = \nabla^2 f(x) = \begin{bmatrix}
\frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\
\frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\
\cdots & \cdots & \cdots & \cdots \\
\frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \cdots & \frac{\partial^2 f}{\partial x_n^2}
\end{bmatrix}
\]
Hessians-Example

Calculate the Hessian matrix for the function

\[f(x, y) = x^2 y^2 \]

To calculate the Hessian matrix; the partial derivatives must be evaluated as

\[\frac{\partial^2 f}{\partial x^2} = 2y^2 \quad \frac{\partial^2 f}{\partial y^2} = 2x^2 \quad \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = 4xy \]

resulting in the Hessian matrix

\[
H = \begin{bmatrix}
\frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\
\frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2}
\end{bmatrix} = \begin{bmatrix}
2y^2 & 4xy \\
4xy & 2x^2
\end{bmatrix}
\]
First Derivative Test For Local Extreme Values

Let x^* be an interior point of a domain D in \mathbb{R}^n and assume that f is twice continuously differentiable on D. It is necessary for a local minimum or a maximum of f at x^* that:

$$\nabla f(x^*) = 0$$

This implies that

$$\frac{\partial f(x^*)}{\partial x_1} = 0$$
$$\frac{\partial f(x^*)}{\partial x_2} = 0$$
$$\vdots$$
$$\frac{\partial f(x^*)}{\partial x_n} = 0$$
First Derivative Test For Local Extreme Values

First derivative test is *inconclusive* to find a local extremum point.

Critical points and saddle points.

Critical point. An interior point of the domain of a function $f(x_1, x_2, \ldots, x_n)$ where all first partial derivatives are zero or where one or more of the first partials does not exist is a **critical point** of f.

Saddle point. A critical point that is not a local extremum is called a saddle point. We can say that a differentiable function $f(x_1, x_2, \ldots, x_n)$ has a saddle point at a critical point (x^*) if we can partition the vector x^* into two subvectors (x^{1*}, x^{2*}) where $x^{1*} \in X^1 \subseteq \mathbb{R}^q$ and $x^{2*} \in X^2 \subseteq \mathbb{R}^p$ ($n = p + q$) with the following property

$$f(x^1, x^{2*}) \leq f(x^{1*}, x^{2*}) \leq f(x^{1*}, x^2)$$
Second Derivative Test For Local Extreme Values

The determinant of the Hessian matrix denoted by $|H|$ can have three cases:

1. If $|H| > 0$ and $\frac{\partial^2 f}{\partial x^2} > 0$ then $f(x, y)$ has a local minimum.

2. If $|H| > 0$ and $\frac{\partial^2 f}{\partial x^2} < 0$ then $f(x, y)$ has a local maximum.

3. If $|H| < 0$ then $f(x, y)$ has a saddle point.
Euclidean Norm

On an n-dimensional Euclidean space \mathbb{R}^n, the intuitive notion of length of the vector $\mathbf{x} = (x_1, x_2, \ldots, x_n)$ is captured by the formula:

$$
\| \mathbf{x} \| := \sqrt{x_1^2 + \cdots + x_n^2}.
$$
Graph of the function \(f(x_1, x_2) = 16x_1 + 12x_2 + x_1^2 + x_2^2 \).
Contour or Level Curves

Level curves of the function $16x_1 + 12x_2 + x_1^2 + x_2^2$
A contour line (often just called a "contour") joins points of equal elevation (height) above a given level,
\[F(x, y) = \sin \left(\frac{1}{2} x^2 - \frac{1}{4} y^2 + 3 \right) \cos(2x + 1 - e^y) \]
Gradient Descent Method

The gradient $\frac{\partial f(x)}{\partial x}$ at location x points toward a direction where the function increases. The negative $-\frac{\partial f(x)}{\partial x}$ is usually called steepest descent direction.
Illustration of steepest descent

\[F(x_0) \geq F(x_1) \geq F(x_2) \geq \cdots, \]
Steepest Descent

Step 1: Set \(x^0, \varepsilon_1 > 0, \varepsilon_2 > 0, M \) - the maximum number of iterations.
Find the gradient \(\nabla f(x) \) of the objective function.

Step 2: Set \(k = 0 \).

Step 3: Compute \(\nabla f(x^k) \).

Step 4: Check the stopping criteria \(||\nabla f(x^k)|| < \varepsilon_1 \):
 a) if the condition is satisfied, set \(x^* = x^k \) and finish the search process;
 b) if the condition is not satisfied, go to step 5.

Step 5: Check the condition \(k \geq M \):
 a) if it is satisfied, finish the search process and set \(x^* = x^k \);
 b) if it is not satisfied, go to step 6.
Steepest Descent

<table>
<thead>
<tr>
<th>Step 6: Find step length t_k minimizing the function $\varphi(t_k) = f(x^k - t_k \cdot \nabla f(x^k))$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7: Compute $x^{k+1} = x^k - t_k \cdot \nabla f(x^k)$.</td>
</tr>
<tr>
<td>Step 8: Check the finishing conditions: $|x^{k+1} - x^k| < \varepsilon_2$ $</td>
</tr>
</tbody>
</table>

a) if both conditions are satisfied with numbers k and $k-1$, finish the search process and set $x^* = x^{k+1}$;

b) if both conditions are not satisfied, set $k = k+1$ and go to step 3.
Steepest Descent Example
(on board)