Dr. H. Irem Tiirkmen

Outline

» Process and Threads

» Multithread Programming
» Multithread Programming in C
- Pros and cons of multithreaded programming

« Pthread

Process and Threads

- A process is an independently running instance
of a program.

- Each process maintains its own heap, stack,
registers and file descriptors

- A thread is smallest sequence of program
instructions that shares its memory space with
others.

« A process can have multiple threads of
execution.

Process vs. Threads

 Processes do not share their memory space,
while threads executing under same process
share the memory space.

» Processes execute independent of each other and
the synchronization between processes is taken
care by kernel only; on the other hand, thread
synchronization has to be taken care by the
process under which the threads are

Process vs. Threads

» Processes have independent open file
descriptors, while threads have shared open file
descriptors

- The interaction between 2 processes is achieved
only through the standard inter-process
communication, while threads executing under
the same process can communicate easily as they
share most of the resources like memory, text
segment etc

Multithreaded programming

» Serial execution:

= All our programs so far has had a single thread of
execution: main thread.

= Program exits when the main thread exits.

o Multithreaded:

s Program is organized as multiple and concurrent
threads of execution.

= The main thread spawns multiple threads.

» The thread may communicate with one
another.

Multithreaded programming in C

 Pthreads: POSIX C library.

« OpenMP

- Intel threading building blocks
- Grand central despatch

- CUDA (GPU)

« OpenCL (GPU/CPU)

Not all code can be made parallel

float params[10]; float params[10];
for(int i=0;i<10;i++) float prev=0;
do_something (params|[i]): for(int i=0;i<10;i++)
{

prev=complicated (params[i], prev);

}

Pros and cons of multithreaded

programming
- Advantages:
= Improves responsiveness
s Improves utilization
= Less overhead compared to multiple processes
- Disadvantages:
= Debugging with threads is difficult.
= Too many threads may reduce the performance.

Creating a Thread

 #include <pthread.h>
 Define a thread ID

= A Thread ID is unique in the context of current
process.

s It could be a structure and represented by type
pthread_t

= pthread_ t tid;

Creating a Thread

» Define set of thread attributes

= pthread_ attr_t : type that contains the attributes
of a thread object (stack address, stack size,

scheduls

= pthread__

ing parameters etc.)
attr_t attr;

pthread__

attr init(&attr); function initializes the

thread attributes object pointed to by attr with
default attribute values.

= After this call, individual attributes of the object
can be set using various related functions

= NULL can be used to create a thread with default
arguments

Creating a Thread

« Define a worker function

- This function contains the code segment which
is executed by the thread.
= vold * foo (void *args)

1

Creating a Thread

- pthread_ create() function in pthread.h file, is used
to create a thread.

- The syntax and parameters details are given as
follows:
= int pthread_ create(pthread_t *thread, const
pthread_attr_t *attr, void * (*start_routine) (void *),
void *arg);
= If thread created successfully, return value will be o

otherwise pthread_create will return an error
number of type int.

How to compile & execute?

- gcc filename.c -o outputfilename —Ipthread
- ./outputfilename

}

i

{

#include <stdio.h>»
#include <pthread.h>

/*creating a thread id in the main function*/ am

/*thread (worker) function definition*/ - Zm
void* threadFunction(void* args){ T am
while(1) T am

| printf("I am threadFunction.\n"); T am

I am

I am

nt main() I am
I am

}

pthread t id; 2l
int ret;
/Fcreating thread®/
ret=pthread create(&id, NULL, threadFunction, NULL);
if(ret==0)
printf("Thread is created successfully.\n");
else
t
printf("Thread is not created.\n");
return 0; /*return from main*/

}

while(1)
printf("I am main function.\n");
return ©;

Thread is created successfully.

main function.
threadFunction.
threadFunction.
threadFunction.
threadFunction.

threadFunction.
threadFunction.
threadFunction.
threadFunction.
main function.
main function.

#include<stdio.h>
#include<pthread.h>
#include<unistd.h>
pthread t tid[2];

void* worker(void *arg)

{
pthread t id = pthread self();
if(pthread_equal(id,tid[@]))
: printf("I am first tread\n");
else
: printf("I am second tread\n");
}
int main(void)
{
int 1 = 0;
int err;
for (1=03;i1<2;1++)
{

err = pthread create(&(tid[1]), NULL, worker, NULL);
if (err 1= @)

: printf("can't created\n");

else

' printf("thread number:%d has been created\n",i+1);

2
sleep(5);
return 9;

pthread_join()

- Without the sleep() function, we did not see the
message of “I am second tread”.

 Just before the second thread is about to be
scheduled, the parent thread, from which the
two threads were created, completed its
execution.

« To make main function to wait for each thread to
complete: pthread_join()

pthread_join()

- int pthread_join(pthread_t thread, void **retval);

 The pthread_join() function waits for the thread
specified by thread to terminate.

- If we are not interested in the return value then we
can set this pointer to be NULL.

» If retval is not NULL, then pthread_join() copies
the exit status of the target thread.

pthread_exit()

- void pthread_ exit(void *retval);

- Terminates the calling thread and returns a
value via retval that (if the thread is joinable) is
available to another thread in the same process
that calls pthread_join()

#include<stdio.h>

#include<pthread.h:
#include<unistd.h>
pthread_t tid[2];
int retl,ret2;

void* worker({wvoid *arg)
r

1
pthread t id = pthread self();
if(pthread_equal({id,tid[@]))
r
A
' printf("I am first tread\n");
retl=1;
; pthread_exit(&retl);
b
else
i
' printf("I am second treadin”);
ret2=2;
g pthread exit(&ret2);
¥
¥
int main{woid)
r
1

int 1 = @, err;
int *retVal[2];
for (i=8;i<2;i++)
:

1
5 err = pthread create(&(tid[i]), MULL, worker, NULL);
if (err != @)
i printf("can't created\n");
else e L
‘ : printf({"thread number:%d has been created\n",i+1); N ag%:_;iat'
¥ o

I am second tr

Epthread_jnin(tid[ﬁ], (wold™*™) &(retVal[a]));

pthread join(tid[1], (wvolid®**)&(retVal[l]))};

printf("\n return wvalue from first thread is ¥d\wn", *retVal[@8]);
printf("\n return value from second thread is ¥d\n",*retWal[1]);
Ereturn 5 H

return value from first

thread is 1

d is 2

Void pointer in C

- A void pointer is a pointer that has no associated
data type with it.

- It can hold address of any type and can be casted
to any type.
- Advantages of the void pointers:

= Void pointers in C are used to implement generic
functions (e.g. gsort() function)

= Functions such as malloc(), calloc() return void*
type. Hence, they can allocate memory for any
data type (just because of the void *)

Void pointer in C

- Standard C does not allow pointer arithmetic
with the void*. However, GNU C considers the
size of the void is 1 byte.

 vold * cannot be derefenced. The use in the left-
side is illegal:

int a = 10;

void *ptr=&a;

printf(“%d”, *ptr); // ILLEGAL

printf(“%d”, * (int*) ptr); // LEGAL

