
Multithreaded Programming

Dr. H. İrem Türkmen

Outline
• Process and Threads

• Multithread Programming

• Multithread Programming in C

• Pros and cons of multithreaded programming

• Pthread

2

Process and Threads
• A process is an independently running instance

of a program.
• Each process maintains its own heap, stack,

registers and file descriptors
• A thread is smallest sequence of program

instructions that shares its memory space with
others.

• A process can have multiple threads of
execution.

Process vs. Threads
• Processes do not share their memory space,

while threads executing under same process
share the memory space.

• Processes execute independent of each other and
the synchronization between processes is taken
care by kernel only; on the other hand, thread
synchronization has to be taken care by the
process under which the threads are

Process vs. Threads
• Processes have independent open file

descriptors, while threads have shared open file
descriptors

• The interaction between 2 processes is achieved
only through the standard inter-process
communication, while threads executing under
the same process can communicate easily as they
share most of the resources like memory, text
segment etc

Multithreaded programming
• Serial execution:

▫ All our programs so far has had a single thread of
execution: main thread.

▫ Program exits when the main thread exits.
• Multithreaded:

▫ Program is organized as multiple and concurrent
threads of execution.

▫ The main thread spawns multiple threads.
▫ The thread may communicate with one

another.

Multithreaded programming in C
• Pthreads: POSIX C library.
• OpenMP
• Intel threading building blocks
• Grand central despatch
• CUDA (GPU)
• OpenCL (GPU/CPU)

Not all code can be made parallel

Pros and cons of multithreaded
programming
• Advantages:

▫ Improves responsiveness
▫ Improves utilization
▫ Less overhead compared to multiple processes

• Disadvantages:
▫ Debugging with threads is difficult.
▫ Too many threads may reduce the performance.

Creating a Thread
• #include <pthread.h>
• Define a thread ID

▫ A Thread ID is unique in the context of current
process.

▫ It could be a structure and represented by type
pthread_t

▫ pthread_t tid;

Creating a Thread
• Define set of thread attributes

▫ pthread_attr_t : type that contains the attributes
of a thread object (stack address, stack size,
scheduling parameters etc.)

▫ pthread_attr_t attr;
pthread_attr_init(&attr); function initializes the
thread attributes object pointed to by attr with
default attribute values.

▫ After this call, individual attributes of the object
can be set using various related functions

▫ NULL can be used to create a thread with default
arguments

Creating a Thread
• Define a worker function
• This function contains the code segment which

is executed by the thread.
▫ void * foo (void *args)

{
…
…

}

Creating a Thread
• pthread_create() function in pthread.h file, is used

to create a thread.
• The syntax and parameters details are given as

follows:
▫ int pthread_create(pthread_t *thread, const

pthread_attr_t *attr, void * (*start_routine) (void *),
void *arg);

▫ If thread created successfully, return value will be 0
otherwise pthread_create will return an error
number of type int.

How to compile & execute?
• gcc filename.c -o outputfilename –lpthread
• ./outputfilename

pthread_join()
• Without the sleep() function, we did not see the

message of “I am second tread”.
• Just before the second thread is about to be

scheduled, the parent thread, from which the
two threads were created, completed its
execution.

• To make main function to wait for each thread to
complete: pthread_join()

pthread_join()
• int pthread_join(pthread_t thread, void **retval);
• The pthread_join() function waits for the thread

specified by thread to terminate.
• If we are not interested in the return value then we

can set this pointer to be NULL.
• If retval is not NULL, then pthread_join() copies

the exit status of the target thread.

pthread_exit()
• void pthread_exit(void *retval);
• Terminates the calling thread and returns a

value via retval that (if the thread is joinable) is
available to another thread in the same process
that calls pthread_join()

Void pointer in C
• A void pointer is a pointer that has no associated

data type with it.
• It can hold address of any type and can be casted

to any type.
• Advantages of the void pointers:

▫ Void pointers in C are used to implement generic
functions (e.g. qsort() function)

▫ Functions such as malloc(), calloc() return void*
type. Hence, they can allocate memory for any
data type (just because of the void *)

Void pointer in C
• Standard C does not allow pointer arithmetic

with the void*. However, GNU C considers the
size of the void is 1 byte.

• void * cannot be derefenced. The use in the left-
side is illegal:

int a = 10;
void *ptr=&a;
printf(“%d”, *ptr); // ILLEGAL
printf(“%d”, * (int*) ptr); // LEGAL

